
N94- 34984

Mechanical Engineering [JCD5

Stanforc__9 C_A. 9430 5-303c______!)

Turbulence mode__ing__for u_st_ady___s_eparated "I_ _

abstract for NASA/AFOSR/ARO Workshop on Unsteady Separation

Peter Bradshaw, Feb. 1990

i. Unsteadiness

The exact transport equations for turbulent (Reynolds)

stresses have left-hand sides representing the "substantial

derivatives" of the Reynolds stresses, i.e. the rates of

change of stress with respect to time, as seen by an

observer following the mean motion of the fluid. Here the

"mean" is a statistical average for the turbulent motion,
distinguished from the ordered unsteadiness on which it is

superimposed: for a turbomachine blade or a cyclically-

pitching airfoil, the mean is a phase average (Fig. I: see

Ref. 1 for a practical discussion). Written in coordinates

fixed with respect to a solid surface, the substantial

derivative appears partly as an Eulerian time derivative at

given spatial coordinate position and partly as a spatial
derivative.

If the Reynolds-stress transport equations are modelled _erm

by term ("stress-transport.. or "second-order" models), the

left-hand sides are left in exact form. The right-hand sides

of the exact equations contain no time derivatives and there

is no justification for introducing them in a model.

Therefore the applicability of a stress-transport model to

unsteady flow can be judged on its performance in steady

flow: a model that behaves well in steady flows with rapid

streamwise changes in stress (implying a large substantial

derivative on the left-hand side) will behave equally well

in unsteady flows where the left-hand side is equally large

because of rapid timewise and/or streamwise changes.

This conclusion is true only of stress-transport models:

models which ignore or approximate the left-hand sides

cannot be judged in this way, but are necessarily suspect in

any flow where the left-hand is large. It seems inescapable

that the only candidates for rapidly-changing unsteady flows

are stress-transport models (e.g. Refs. 2, 3). Any model

based on eddy viscosity relates the turbulent stresses to

the local mean velocity gradients, which amounts to ignoring

the left-hand sides of the Reynolds-stress transport

equations. (This is trueeven for two-equation models, which

use transport equations for turbulent energy and dissipation
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rate.) Algebraic stress models are based on an approximation

to the left-hand sides which can easily be shown to be poor

in rapidly-changing flows.

Clearly, unsteadiness can lead to secondary effects (e.g.

appearance of concentrated spanwise vortices in a boundary
layer or vortex street) which would defeat a turbulence

model even in steady flow, so that passing :he "left-hand-

side" test is necessary but not sufficient.

-%.. Separa-_i,on

Separation presents two speci=ic problems to a turbulence
model:--

(i) Prediction of the flow near separation depends

critically on the "near-wall" part of the turbulence model.

Several workers are currently studying this problem (Refs.

4-9}, but all are using conventional models for the

correlations between the pressure fluctuation and the

veloclty-gradient fluctuations. These correlations

redistribute contributions to the Reynolds-stress tensor

among the different components, and their modelling is a key

part of any transport-equation method. Current practice is
to relate the "redistribution" terms to local turbulence

quantities and mean-flow gradients, but this is essentially

risky because the pressure fluctuation at a point depends on

an integral of the velocity fluctuations over a nominally

infinite volume. Comparison with turbulence simulation data

(Ref. 10} show that this "local" assumption breaks down very

badly in the viscous wall region, where turbulence

quantities and mean-flew gradients are changing rapidly with

distance from the surface. The models can always be forced

to reproduce the "law of the _a!l" in attached flows, simply

by making the empirical coefficients functions of a Reynolds

number related to the ,dimensionless wall distance y+:

however the flaw in the basic assumptions suggests that the

models will break down near separation where the law of the

wall no longer holds.

(ii} Downstream of separation, a boundary layer changes

gradually _o a mixing layer. Even in the simplest case of

formation of a mixing layer from the boundary layer at exit

from a Jet nozzle, the effects of initial conditions persist
for extremely long distances downstream. If the turbulence

model does not predict boundary layers and (asymptotic)

mixing layers, adecuazelv. _ with the same set of coe=ficients,

the coefficients must be interpolated in the streamwise

direction. This is the "zonal mode!_ing '' technique (Ref.

!I): i< is also applicable in ad hoc corrections of the

defects of turbulence models in special zones like imbedded

vortices or shock-wave interactions.
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Fig. 1 Phase Averaging in Cyclically-Unsteady Flow
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